Autumn Term						
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
	Block 1: Place Value within 10,000				Block 2: Addition and subtraction	
	- Represent numbers within 1000 - Partition numbers within 1000 - Use a number line to 1000 - Estimate numbers on a number line to 1000 - Count and use thousands	- Represent numbers within 10,000 -Partition numbers within 10,000 -Partition numbers flexibly within 10,0000 -Find 1, 10, 100, 1,000 more or less	- Use a number line to 10,000 -Estimate on a number line to 10,000 - Compare numbers within 10,000 - Order numbers to 10,000 - Use Roman numerals to 100	-Round to the nearest 10 -Round to the nearest 100 -Round to the nearest 1000 - Round to the nearest 10 , 100 or 1000	- Add 1s, 10s, 100s and 1000s - Subtract 1s, 10s, 100s and 1000s - Add 2, 3 and 4-digit numbers with no exchange - Add up to 4-digit numbers with one exchange - Add up to 4-digit numbers with multiple exchanges	- Subtract from 4-digit numbers with no exchange - Subtract from 4-digit numbers with one exchange - Subtract from 4-digit numbers with multiple exchanges - Solving addition and subtraction problems with and without exchanges
	-Read and write numbers up to 1,000 in numerals and words (Y3) - Identify, represent and estimate numbers using different representations -Recognise the place value of each digit in a 3-digit number (hundreds, tens, ones) (Y3) - Count in multiples of 6, 7, 9, 25 and 1,000 -Recognise the place value of each digit in a 4-digit number - Find 1,000 more or less than a given number		- Identify, represent and estimate numbers using different representations - Order and compare numbers beyond 1,000 -Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value - Round any number to the nearest 10,100 or 1,000		-Add and subtract numbers with formal written methods of col where appropriate - Solve addition and subtractio contexts, deciding which ope and why	up to four digits using the mnar addition and subtraction two-step problems in tions and methods to use
	4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100 ; apply this to identify and work out how many 100s there are in other four-digit multiples of 100 . Year 3 Conceptual prerequisite: Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of 10 . 4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and non-standard partitioning. Year 3 Conceptual prerequisite: Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and non-standard partitioning. Future applications: Compare and order numbers. 4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100, and rounding to the nearest of each. Year 3 Conceptual prerequisite: Reason about the location of any three-digit number in the linear number system, including identifying the previous and next multiple of 10 and 100. Future applications: Compare and order numbers. Estimate and approximate to the nearest multiple of $1,000,100$ or 10 . 4NPV-4 Divide 1,000 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with 2, 4, 5 and 10 equal parts. Year 3 Conceptual prerequisite: Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with $2,4,5$ and 10 equal parts. Future applications: Read scales on graphs and measuring instruments				4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and non-standard partitioning. Year 3 Conceptual prerequisite: Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and nonstandard partitioning. Future applications: Add and subtract using mental and formal written methods. 4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100) Year 3 Conceptual prerequisite: Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10)	

Autumn Term						
	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Block 2: Addition and subtraction	Block 3: Area	Block 4: Multiplication and division (times tables facts)			
$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \dot{\omega} \\ & \overline{\bar{\sigma}} \\ & \dot{\omega} \end{aligned}$	-Find an efficient subtraction method -Estimate answers to calculations -Use the inverse and estimation to check answers	- Understand and explore area - Find the area by counting squares -Make shapes with given areas -Compare areas	- 3 times table facts - Multiply and divide by 6 -6 times table facts - Multiply and divide by 9 $\bullet 9$ times table facts	-3, 6 and 9 times table facts - Multiply and divide by 7 - 7 times table facts - Multiply and divide by 11 - 11 times table facts	- Multiply and divide by 12 -12 times table facts - Multiply by 1 and 0 -Divide a number by 1 and itself - Multiply 3 numbers	
	- Add and subtract numbers with up to four digits using the formal written methods of columnar addition and subtraction where appropriate - Estimate and use inverse operations to check answers to a calculation	- Find the area of rectilinear shapes by counting squares	- Recall multiplication and division facts for multiplication tables up to 12×12 -Recognise and use factor pairs and commutativity in mental calculations - Count in multiples of 6, 7, 9, 25 and 1,000 -Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers			
	4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and nonstandard partitioning. Year 3 Conceptual prerequisite: Recognise the place value of each digit in three-digit numbers, and compose and decompose threedigit numbers using standard and non-standard partitioning. Future applications: Add and subtract using mental and formal written methods.	4G-2 Identify regular polygons, including equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons. Future applications: Draw, compose and decompose shapes according to given properties, dimensions, angles or area.	4NF-1 Recall multiplication multiples of the correspond Year 3 Conceptual prereq multiplication tables, and re corresponding number. 4MD-2 Manipulate multipli property of multiplication. Year 3 Conceptual prereq division. Write and use multip Future applications: Reco contexts. 4MD-3 Understand and ap Future applications: Reco	vision facts up to, and recognis mber. Recall multiplication and divisio products in these multiplicatio and division equations, and und Understand the inverse relation on table facts with the factors p and apply the structures of multip distributive property of multiplic when to use and apply the distribut	oducts in multiplication tables as acts in the 5 and 10, and 2, 4 and 8 ables as multiples of the and and apply the commutative p between multiplication and nted in either order. ation and division to a variety of n. ve property of multiplication	

Spring Term						
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
	Block 1: Multiplication and division			Block 2: Measurement - Length and perimeter		Block 3: Fractions
	- Find factor pairs - Use factor pairs - Multiply by 10 - Multiply by 100 - Divide by 10	-Divide by 100 - Find and use related facts -Multiply a 2 -digit by a 1 -digit number (informal written method) - Multiply a 2-digit by a 1-digit number (formal written method) -Multiply 3-digit by a 1 -digit number	-Divide 2-digit by a 1-digit number (without remainders) - Divide 2-digit by a 1-digit number (with remainders) -Divide a 3-digit number by a 1-digit number -Find all the combinations \bullet Find an efficient method of multiplication	- Measure in km and m - Find equivalent lengths (m and km) - Find the perimeter on a grid - Calculate the perimeter of a rectangle -Calculate the perimeter of rectilinear shapes	-Find missing lengths -Calculate perimeters with missing lengths -Calculate the perimeter of regular polygons -Calculate the perimeter of irregular polygons	- Understand a whole - Explore fractions greater than 1 -Count in fractions beyond 1 -Partition mixed numbers -Position mixed numbers on a number line
	- Recognise and use factor pairs and commutativity in mental calculations - Recall multiplication and division facts for multiplication tables up to 12×12 Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together 3 numbers - Solve problems involving multiplying and adding, including using the distributive law to multiply 2-digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects			- Convert between different units of measure [for example, kilometre to metre; hour to minute] - Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres		N/A
皆	4NF-1 Recall multiplication and division facts up to, and recognise products in multiplication tables as multiples of the corresponding number. Year 3 Conceptual prerequisite Recall multiplication and division facts in the 5 and 10, and 2,4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number. 4NF-2 Solve division problems, with two-digit dividends and one-digit divisors, that involve remainders and interpret remainders appropriately according to the context. Year 3 Conceptual prerequisite Use known division facts to solve division problems. Future applications Correctly represent and interpret remainders when using short and long division. 4MD-2 Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication. Year 3 Conceptual prerequisite: Understand the inverse relationship between multiplication and division. Write and use multiplication table facts with the factors presented in either order. Future applications: Recognise and apply the structures of multiplication and division to a variety of contexts. 4MD-3 Understand and apply the distributive property of multiplication. Future applications: Recognise when to use and apply the distributive property of multiplication			4G-2 Identify regular polygons, including equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons. Year 3 Conceptual prerequisite: Measure lines in centimetres and metres. Add more than 2 addends. Recall multiplication table facts. Future applications Draw, compose and decompose shapes according to given properties		4F-1 Reason about the location of mixed numbers in the linear number system. Year 3 conceptual prerequisite: Reason about the location of fractions less than 1 in the linear number system. Future applications: Compare and order fractions.

Spring Term						
	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Block 3: Fractions			Block 4: Decimals A		
n \% ¢ $\overline{\overline{0}}$ ¢	- Compare mixed numbers - Order mixed numbers - Understand improper fractions - Convert mixed numbers to improper fractions - Convert improper fractions to mixed numbers	-Find equivalent fractions on a number line - Make fraction families - Add two fractions (same denominator) - Add two or more fractions (same denominator) - Add fractions to a mixed number (same denominator)	- Subtract two fractions (same denominator) - Subtract a fraction from a whole - Subtract a fraction from a mixed number (same denominator) - Subtract a fraction from a mixed number (crossing a whole)	- Explore tenths as fractions -Explore tenths as decimals - Explore tenths greater than 1 -Position tenths on a number line	-Divide a 1-digit number by 10 -Divide a 2-digit number by 10 - Explore hundredths as fractions - Explore hundredths as decimals -Partition hundredths within 1	-Partition hundredths greater than 1 -Compare tenths and hundredths within 1 - Divide a 1 or 2-digit number by 100
	- Recognise and show, using diagrams, families of common equivalent fractions - Add and subtract fractions with the same denominator			- Recognise and write decimal equivalents of any number of tenths or hundredths - Compare numbers with the same number of decimal places up to 2 decimal places - Find the effect of dividing a 1 - or 2-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths		
	4F-1 Reason about the location of mixed numbers in the linear number system. Year 3 conceptual prerequisite: Reason about the location of fractions less than 1 in the linear number system. Future applications: Compare and order fractions. 4F-2 Convert mixed numbers to improper fractions and vice versa. Year 3 conceptual prerequisite: Identify unit and non-unit fractions. Future applications: Compare and order fractions. Add and subtract fractions where calculation bridges whole numbers. 4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers. Year 3 conceptual prerequisite: Add and subtract fractions with the same denominator, within 1 whole.			4F-1 Reason about the location of mixed numbers in the linear number system. Year 3 conceptual prerequisite: Reason about the location of fractions less than 1 in the linear number system. Future applications: Compare and order fractions. 4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size. Year 3 conceptual prerequisite: Multiply two-digit numbers by 10, and divide three-digit multiples of 10 by 10 . Future applications: Convert between different metric units of measure. Apply multiplication and division by 10 and 100 to calculations involving decimals. 4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100) Year 3 Conceptual prerequisite: Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10) Future applications: Apply place-value knowledge to known additive and multiplicative number facts, extending to a whole number of larger powers of ten and powers of ten smaller than one.		

	Summer Term					
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
	Block 1: Decimals B		Block 2: Measurement - Money		Block 3: Measurement - Time	
	- Make a whole using tenths - Make a whole using hundredths -Partition decimals -Flexibly partition decimals -Compare decimals	- Order decimals - Round number with 1 decimal place to the nearest whole number -Find decimals equivalents of halves and quarters	-Write amounts of money using decimals - Convert money between pounds and pence -Compare amounts of money - Order amounts of money -Estimate amounts	- Add and subtract money - Multiply and divide money - Solve problems involving money	-Understand years, months, weeks and days -Convert between years, months, weeks and days - Compare times in hours, minutes and seconds -Convert between hours, minutes and seconds	-Convert between analogue and digital times (12-hour clock) -Convert to 24-hour clock times -Convert from 24hour clock times
	- Compare numbers with the same number of decimal places up to 2 decimal places - Recognise and write decimal equivalents of any number of tenths or hundredths - Solve simple measure and money problems involving fractions and decimals to 2 decimal places -Round decimals with 1 decimal place to the nearest whole number - Recognise and write decimal equivalents to $1 / 4,1 / 2$, and 3/4		- Estimate, compare and calculate different measures, including money in pounds and pence		- Solve problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to days - Read, write and convert time between analogue and digital 12- and 24-hour clock	
	4F-1 Reason about the location of mixed numbers in the linear number system. Year 3 conceptual prerequisite: Reason about the location of fractions less than 1 in the linear number system. Future applications: Compare and order fractions. 4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size. Year 3 conceptual prerequisite: Multiply two-digit numbers by 10 , and divide three-digit multiples of 10 by 10 . Future applications: Convert between different metric units of measure. Apply multiplication and division by 10 and 100 to calculations involving decimals. 4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100) Year 3 Conceptual prerequisite: Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10) Future applications: Apply place-value knowledge to known additive and multiplicative number facts, extending to a whole number of larger powers of ten and powers of ten smaller than one.		4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size. Year 3 conceptual prerequisite: Multiply two-digit numbers by 10 , and divide three-digit multiples of 10 by 10 . Future applications: Convert between different metric units of measure. Apply multiplication and division by 10 and 100 to calculations involving decimals. 4F-1 Reason about the location of mixed numbers in the linear number system. Year 3 conceptual prerequisite: Reason about the location of fractions less than 1 in the linear number system. Future applications: Compare and order fractions.		4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size. Year 3 conceptual prerequisite: Multiply two-digit numbers by 10 , and divide three-digit multiples of 10 by 10 . Future applications: Convert between different metric units of measure. Apply multiplication and division by 10 and 100 to calculations involving decimals.	

	Summer Term				
	Week 7	Week $8 \quad$ Week 9	Week 10	Week 11	Week 12
		Block 4: Geometry - shape	Block 5: Statistics	Block 6: Position and direction	
n ¢ ¢ $\bar{\omega}$ ¢		- Recognise turns and angles -Identify right, acute and obtuse •Identify regular and irregular polygons angles - Identify lines of symmetry	- Interpret pictograms and bar charts - Solve comparison, sum and difference problems - Interpret line graphs - Draw line graphs	- Read co-ordinates - Use co-ordinates to describe position -Plot coordinates -Draw 2-D shapes on a grid	- Translate points on a grid - Translate shapes on a grid - Describe translations
		- Identify acute and obtuse angles and compare and order angles up to two right angles by size - Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes - Identify lines of symmetry in 2-D shapes presented in different orientations - Complete a simple symmetric figure with respect to a specific line of symmetry	- Interpret and present data using bar charts, pictograms and tables - Solve one-step and two-step questions using information presented in scaled bar charts and pictograms and tables	- Describe positions on a 2-D grid as coordinates in the first quadrant - Plot specified points and draw sides to complete a given polygon - Describe movements between positions as translations of a given unit to the left/right and up/down	
皆		4G-2 Identify regular polygons, including equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons. Year 3 Conceptual prerequisite: Measure lines in centimetres and metres. Add more than 2 addends. Recall multiplication table facts. Future applications: Draw, compose and decompose shapes according to given Properties 4G-3 Identify line symmetry in 2D shapes presented in different orientations. Reflect shapes in a line of symmetry and complete a symmetric figure or pattern with respect to a specified line of symmetry. Future applications: Draw polygons, specified by coordinates in the 4 quadrants: draw shapes following translation or reflection in the axes.	4NPV-4 Divide 1,000 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts. Year 3 Conceptual prerequisite: Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with $2,4,5$ and 10 equal parts. Future applications: Read scales on graphs and measuring instruments	4G-1 Draw polygons, specified by coordinates in the first quadrant, and translate within the first quadrant. Year 3 Conceptual prerequisite: Draw polygons by joining marked points. Future applications: Draw polygons, specified by coordinates in the 4 quadrants 4G-3 Identify line symmetry in 2D shapes presented in different orientations. Reflect shapes in a line of symmetry and complete a symmetric figure or pattern with respect to a specified line of symmetry. Future applications: Draw polygons, specified by coordinates in the 4 quadrants: draw shapes following translation or reflection in the axes.	

