Autumn Term						
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
	Block 1: Place Value within 100				Block 2: Addition and subtraction within 100	
	- Count forwards and backwards within 20 - Tens and ones within 20 - Count forwards and backwards within 50 -Tens and ones within 50 - Compare numbers within 50	- Count objects to 100 - Read and write numbers to 100 - Represent numbers to 100 - Tens and ones using a partwhole model	- Add with tens and ones - Use a place value chart - Compare objects - Compare numbers - Order objects and numbers	- Count in 2s - Count in 5 s - Count in 10s - Count in 3s	- Fact families to 20 - Check calculations - Compare number sentences - Number bonds within 10 - Related facts (ones and tens)	- Bonds to 100 - Add and subtract ones - Ten more and ten less - Add and subtract tens - Add by making ten
	- Read and write numbers to at least 100 in numerals and in words - Recognise the place value of each digit in a two-digit number (tens, ones) - Compare and order numbers from 0 up to 100; use <, > and $=$ signs	- Read and write numbers to at least 100 in numerals and in words -Identify, represent and estimate numbers using different representations, including the number line	- Recognise the place value of each digit in a two-digit number (tens, ones) - Compare and order numbers from 0 up to 100; use <, > and = signs	- Count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward and backward	- Recall and use addition and subtr derive and use related facts up - Add and subtract numbers usin representations, and mentally, ones, a two-digit number and three one-digit numbers. - Show that addition of two num (commutative) and subtraction cannot. - Recognise and use the inverse subtraction and use this to che number problems. - Solve problems with addition and objects and pictorial represent knowledge of mental and written	action facts to 20 fluently, and 100 concrete objects, pictorial luding: a two-digit number and s, two two-digit numbers, adding s can be done in any order one number from another lationship between addition and calculations and solve missing subtraction: using concrete ns, applying their increasing methods
	2NPV-1 Recognise the place value of each digit in two-digit numbers, and compose and decompose two-digit numbers using standard and non-standard partitioning Year 1 conceptual prerequisites: Know that 10 ones are equivalent to 1 ten Know that multiples of 10 are made up from a number of tens, for example, 50 is 5 tens Future applications: Compare and order numbers 2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 . Year 1 conceptual prerequisites: - Place the numbers 1 to 9 on a marked, but unlabelled, 0 to 10 number line - Estimate the position of the numbers 1 to 9 on an unmarked $0-10$ number line - Count forwards and backwards to and from 100.				2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice. Year 1 conceptual prerequisites: Develop fluency in addition and subtraction facts within 10. 2AS-1 Add and subtract across 10 Year 1 conceptual prerequisites: Learn and use number bonds to 10. 2AS-3 - Add and subtract within 100 by applying related one-digit addition and subtraction facts - Add and subtract only ones or only tens to/from a two-digit number. Year 1 conceptual prerequisites: Add and subtract within 10, for example Future applications: Add and subtract using mental and formal written methods.	
	Working Towards: - Read and write numbers in numerals up to 100 - Partition a two-digit number into tens and ones to demonstrate an understanding of place value, though they may use structured resources to support them Working At: - Read scales in divisions of ones, twos, fives and tens - Partition any two-digit number into different combinations of tens and ones, explaining their thinking verbally, in pictures or using apparatus Greater Depth: Read scales where not all numbers on the scale and shown and estimate points in between				Working Towards: - Add and subtract (one-digit numbers) explaining their method verbally in pictures or using apparatus - Recall at least four of the six number bonds for 10 and reason about associated facts Working At: Recall all the number bonds to and within 10 and use these to reason with. Greater Depth: Use reasoning about numbers and relationships to solve more complex problems and explain their thinking	

Autumn Term						
	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Block 2: Addition and subtraction within 100			Block 3: Measurement: money		Block 4: Multiplication and $\underline{\text { division }}$
	- Add a 2-digit and 1-digit number (crossing ten) - Subtract (crossing ten) - Subtract a 1-digit from a 2-digit number (crossing ten)	- Add two 2-digit numbers (not crossing ten) - Add two 2-digit numbers (crossing ten) - Subtract two 2-digit numbers (not crossing ten) - Subtract two 2-digit numbers (crossing ten)	- Find and make number bonds within 20 - Number bonds to 100 (tens and ones) - Add three 1-digit numbers	- Count money in pence - Count money in pounds - Count money in pounds and pence - Make an mount of money - Make the same amount	- Compare money - Find the total - Find the difference - Find change - Solve two-step money problems	- Make equal groups - Make unequal groups equal - Add equal groups - Make arrays
	- Solve problems with addition and subtraction:using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods - Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 \bullet Add and subtract numbers using concrete objects, pictorial representations, and mentally, including:a two-digit number and ones, a two-digit number and tens, two two-digit numbers, adding three one-digit numbers. - Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot.			- Recognise and use symbols for pounds (£) and pence (p); - Combine amounts to make a particular value - Find different combinations of coins that equal the same amounts of money - Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change		- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts
	2AS-1 Add and subtract across 10 Year 1 conceptual prerequisites: 10. 2AS-3 Add and subtract within 100 addition and subtraction facts: add to/from a two-digit number. Year 1 conceptual prerequisites: example Future applications: Add and subtr written methods.	Learn and use number bonds to by applying related one-digit and subtract only ones or only tens Add and subtract within 10, for ract using mental and formal	2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a two-digit number. Year 1 conceptual prerequisites: Add and subtract within 10 , for example Future applications:Add and subtract using mental and formal written methods. 2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice. Year 1 conceptual prerequisites: Develop fluency in addition and subtraction facts within 10.	2NPV-1 Recognise the place value of each digit in two-digit numbers, and compose and decompose two-digit numbers using standard and non-standard partitioning Year 1 conceptual prerequisites: Know that 10 ones are equivalent to 1 ten. Know that multiples of 10 are made up from a number of tens, for example, 50 is 5 tens	2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 . 2AS-1 Add and subtract across 10 2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?". 2AS-3 Add and subtract within 100 by applying related one digit addition and subtraction facts: add and subtract only ones or only tens to/from a two-digit number. 2AS-4 Add and subtract within 100 by applying related one digit addition and subtraction facts: add and subtract any 2 two digit numbers.	2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables. Year 1 conceptual prerequisites: Count in multiples of 2,5 and 10.
	Working Towards: - Add and subtract (one-digit num - Recall At least four of the six nu Working At: Recall all the number Greater Depth: Use reasoning abo explain their thinking	bers) explaining their method verbally mber bonds for 10 and reason abou bonds to and within 10 and use thes ut numbers and relationships to solve	ally in pictures or using apparatus ut associated facts se to reason with. ve more complex problems and	Working Towards: Know the value of different coins Working At: - Use different coins to make the same amount	Working At: Use different coins to make the same amount Greater Depth: \bullet Use reasoning about numbers and relationships to solve more complex problems and explain their thinking - Solve unfamiliar word problems that involve more than one step	Working Towards: Count in twos, fives and tens from 0 and use this to solve problems Greater Depth: Use reasoning about numbers and relationships to solve more complex problems and explain their thinking

Spring Term						
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
	Block 1: Multiplication and division				Block 2: Statistics	
	- Recognise equal groups - Make equal groups - Add equal groups - Multiplication sentences using the x symbol - Multiplication sentences from pictures	- Use arrays - Make doubles - 2 times table - 5 times table - 10 times table	- Make equal groups by sharing - Make equal groups by grouping - Make equal groups by grouping and sharing	- Divide by 2 - Recognise odd and even numbers - Divide by 5 - Divide by 10	- Make tally charts -Draw pictogram 1-1 - Interpret pictograms 1-1	- Draw pictograms in 2s -Draw pictograms in 5 s and 10 s - Interpret pictograms in 2s, 5s and 10 s - Draw block diagrams - Interpret block diagrams
	- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts - Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division ($*$) and equals (=) signs - Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers - Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot				- Interpret and construct simple pictograms, tally charts, block diagrams and simple tables - Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity - Ask and answer questions about totalling and comparing categorical data. - Count in steps of 2, 3, and 5 from 0, and in tens from any number, forward and backward	
	2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables. Year 1 conceptual prerequisites: Count in multiples of 2,5 and 10 Future applications: - Use multiplication to represent repeated addition context for other group sizes - Memorise multiplication tables.		2MD- 2 Relate grouping problems where the numbers of groups where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotitive division) Year 1 conceptual prerequisites: Count in multiples of 2, 5 and 10 to find how many groups of 2,5 or 10 there are in a particular quantity, set in everyday contexts.		N/A	2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 . Year 1 conceptual prerequisites: Place the numbers 1-9 on a marked, but unlabelled 0-10 number line. Future applications: Compare and order numbers 2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables. Year 1 conceptual prerequisites: Count in multiples of 2,5 and 10
	Greater Depth: - Recall and use multiplication and division facts for 2,5 and 10 and make deductions outside known multiplication facts - Use reasoning about numbers and relationships to solve more complex problems and explain their thinking				Greater Depth: - Read scales where not all numbers on the scale are given and estimate points in between - Use reasoning about numbers and relationships to solve more complex problems and explain their thinking - Solve unfamiliar word problems that involve more than one step	

Spring Term						
	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Block 3: Geometry - Properties of shape			Block 4: Fractions		
¢	- Recognise 2D and 3D shapes - Make 2D and 3D shapes - Count sides on 2D shapes - Count vertices on 2D shapes - Draw 2D shapes	- Lines of symmetry - Sort 2D shapes - Make patterns with 2D shapes - Count faces on 3D shapes	- Count edges on 3D shapes - Count vertices on 3D shapes - Sort 3D shapes \bullet Make patterns with 3D shapes	- Parts and wholes - Make equal parts - Recognise a half - Find a half - Recognise a quarter	- Find a quarter - Recognise a third - Find a third - Unit fractions - Non-unit fractions	- Recognise equivalence of a half and two quarters - Find three quarters - Count in fractions - Solve problems with fractions
	- Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line - Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] - Compare and sort common 2-D and 3-D shapes and everyday objects - Order and arrange combinations of mathematical objects in patterns and sequences			- Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$, and $3 / 4$ of a length, shape, set of objects or quantity -Write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$		
	2G-1 Use precise language to describe the properties of 2D and 3D shapes, and compare shapes by reasoning about similarities and differences in properties. Year 1 conceptual prerequisites: Recognise common 2D and 3D shapes presented in different orientations. Future applications: - Identify similar shapes. - Identify regular polygons			N/A Ready -to -progress criteria relating to fractions are Year 3 objectives.		
	Working Towards: - Name some common 2-D and 3-D shapes from a group of shapes or from pictures of the shapes and describe some of their properties (e.g. triangles, rectangles, squares, circles, cuboids, cubes, pyramids and spheres). Working At: - Name and describe properties of 2-D and 3-D shapes, including number of sides, vertices, edges, faces and lines of symmetry. Greater Depth: - Describe similarities and differences of 2-D and 3-D shapes, using their properties (e.g. that two different 2-D shapes both have only one line of symmetry; that a cube and a cuboid have the same number of edges, faces and vertices, but different dimensions).			Working Towards: Count in twos, fives and tens from 0 and use this to solve problems Working At: - Recall multiplication and division facts for 2,5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary - Identify $1 / 4,1 / 3,1 / 2,2 / 4,3 / 4$ of a number or shape, and know that all parts must be equal parts of the whole Greater Depth: - Recall and use multiplication and division facts for 2,5 and 10 and make deductions outside known multiplication facts - Use reasoning about numbers and relationships to solve more complex problems and explain their thinking - Solve unfamiliar word problems that involve more than one step		

	Summer Term				
	Week $1 \quad$ Week 2	Week 3	Week 4	Week 5	Week 6
	Block 1 Measurement: Length and height	Block 2 Geometry: Position and direction		Consolidation and Problem Solving	
	- Compare lengths and heights - Compare lengths (m and cm) \bullet Measure length (non-standard units) \bullet Order lengths \bullet Use the four operations with length \bullet Measure length (cm) \bullet Solve problems involving lengths	- Describe position - Solve problems with position - Describe movement	- Describe turns - Describe movement and turns - Make patterns with shapes (using direction and turns)		
	-Choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); to the nearest appropriate unit using rulers - Compare and order lengths and record the results using >, <, and = - Compare and order lengths and record the results using >, <, and = - Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures - Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.	- Order and arrange combinations of mathematical objects in patterns and sequences - Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise). - Work with patterns of shapes, including those in different orientations. \bullet Use the concept and language of angles to describe 'turn' by applying rotations, including in practical contexts			
	2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 . Year 1 conceptual prerequisites: Count forwards and backwards to and from 100. Future applications: Compare and order numbers	N/A	N/A		
	Working Towards: Count in twos, fives and tens from 0 and use this to solve problems Working At: Read scales in divisions of ones, twos, fives and tens. Greater Depth: - Read scales where not all numbers on the scale are given and estimate points in between. - Use reasoning about numbers and relationships to solve more complex problems and explain their thinking - Solve unfamiliar word problems that involve more than one step	Greater Depth: - Solve unfamiliar word problems that involve more than one step	Working At: - Identify $1 / 4,1 / 3,1 / 2,2 / 4,3 / 4$, of a number or shape, and know that all parts must be equal parts of the whole		

	Summer Term				
	Week $7 \quad$ Week 8	Week 9	Week 10	Week 11	Wk 12
	Block 3 Measurement: Time	Block 4 Measurement: Mass, capacity and temperature			
$\begin{aligned} & \overline{\bar{N}} \stackrel{0}{0} \\ & E_{0}^{0} \\ & \omega \end{aligned}$	- Tell time to the hour \bullet Write the time - Tell time to the half hour \bullet Hours and days - O-clock and half past \bullet Find durations of time - Quarter past and quarter to - Compare durations of time - Tell the time to 5 minutes	- Introduce weight and mass - Measure mass - Compare mass - Measure mass in grams - Measure mass in kilograms	- Introduce capacity and volume - Measure capacity - Compare volumes - Measure in millilitres - Measure in litres	- Use the four operations with mass - Use the four operations with volume - Identify and compare temperature	
E 0 0 0 0 0 0 0 0 0 0 0 0	- Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times - Know the number of minutes in an hour and the number of hours in a day. - Compare and sequence intervals of time	- Choose and use appropriate length/height in any direction capacity (litres $/ \mathrm{ml}$) to the nea thermometers and measuring - Compare and order lengths, results using >, <and =	d units to estimate and measure mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); ropriate unit, using rulers, scales, volume/capacity and record the	- Solve problems involving multiplication and division, including problems in contexts - Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures - Choose and use appropriate standard units to estimate and measure temperature $\left({ }^{\circ} \mathrm{C}\right)$ to the nearest appropriate unit, using thermometers - Compare and order numbers from 0 up to 100; use <, > and = signs	
	2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10. Year 1 conceptual prerequisites: Count forwards and backwards to and from 100. Future applications: Compare and order numbers	2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10. Year 1 conceptual prerequisites: Count forwards and backwards to and from 100. Future applications: Compare and order numbers			
	Working Towards: - Read and write numbers in numerals up to 100 - Count in twos, fives and tens from 0 and use this to solve problems Working At: Read the time on a clock to the nearest 15 minutes Greater Depth: - Read the time on a clock to the nearest 5 minutes. - Use reasoning about numbers and relationships to solve more complex problems and explain their thinking	Working At: Read scales in divisions of ones, twos, fives and tens Greater Depth: - Read scales where not all numbers on the scale are given and estimate points in between. - Use reasoning about numbers and relationships to solve more complex problems and explain their thinking - Solve unfamiliar word problems that involve more than one step			

